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Abstract This paper presents an algorithm for unconstrained T-shape homogenous block
cutting patterns of rectangular pieces. A vertical cut divides the stock sheet into two segments.
Each segment consists of sections that have the same length and direction. A section contains
a row of homogenous blocks. A homogenous block consists of homogenous strips of the
same piece type. Each cut on the block produces just one strip. The directions of two strips
cut successively from a block are either parallel or orthogonal. The algorithm uses a dynamic
programming recursion to generate optimal blocks, solves knapsack problems to obtain the
block layouts on the sections and the section layout on segments of various lengths, and
optimally selects two segments to compose the cutting pattern. The computational results
indicate that the algorithm is efficient in improving material usage, and the computation time
is reasonable.

Keywords Cutting stock · Unconstrained two-dimensional cutting · Homogenous blocks

1 Introduction

The unconstrained two-dimensional cutting (UTDC) problem discussed is as follows [1]:
m types of rectangular pieces are to be cut from a rectangular sheet L × W (length L and
width W ), where the cuts made are restricted to guillotine ones. The i th type has size li ×wi ,
and value ci , i = 1, . . . , m. Assume that pattern A includes zi pieces of type i , and N is the
set of natural numbers. The mathematical model for the UTDC problem is:

max

{
m∑

i=1

ci zi ; A is a feasible pattern; zi ∈ N, i = 1, . . . , m

}

Y. Cui (B)
Department of Computer Science, Guangxi Normal University, Guilin 541004, China
e-mail: ydcui@263.net

Z. Liu
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

123



268 J Glob Optim (2008) 41:267–281

Fig. 1 A two-stage pattern and its cutting process. (a) The pattern and the first stage cuts and (b) the third
strip and the second stage cuts

The patterns for the above general UTDC problem are called general patterns. Although
exact algorithms [2,3] exist for general patterns, the computational complexities of them
are unknown. The computational experiences in the literature have indicated that the time
required by an exact algorithm to solve large-scale problems may become unaffordable. This
has motivated people to study specialized, less-general types of patterns that can be effi-
ciently solved to optimality. So there is a tradeoff between solution time and solution quality
(closeness to the general solution).

A guillotine cut always divides a rectangle into two small rectangles. Staged patterns are
typical specialized patterns. A staged pattern can be cut into pieces in several stages [4–6].
The direction of the cuts made at the next stage is perpendicular to that of the cuts made at
the current stage. Figure 1 shows a two-stage pattern and its cutting process. Horizontal cuts
denoted by the arrows divide the sheet into strips at the first stage, and vertical cuts divide
the strips into pieces at the second stage. Figure 2 shows a three-stage pattern that can be
cut into pieces in three stages. Vertical cuts divide the sheet into segments at the first stage.

Fig. 2 A three-stage pattern and the first stage cuts
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Fig. 3 T-shape patterns (copied from [1]). (a) The dividing cut is vertical and (b) the dividing cut is horizontal

Each segment contains a two-stage pattern that can be cut into pieces in the same way as that
in Fig. 1. Algorithms for two- and three-stage patterns can be found in [4–6], and those for
multistage patterns in [5–7]. They are all based on dynamic programming techniques.

T-shape patterns [8] also belong to specialized patterns. As shown in Fig. 3, a dividing cut
denoted by the arrow divides a T-shape pattern into two segments. One contains horizontal
strips, and the other consists of vertical strips. The algorithm in [8] is based on dynamic
programming techniques. It determines the optimal position of the dividing cut and the strip
layouts on the two segments. A T-shape pattern becomes a two-stage pattern if the dividing
cut coincides with one edge of the sheet. In this case, the pattern contains only one segment.
T-shape patterns are a super set of two-stage patterns, and a subset of three-stage patterns.

This paper proposes the T-shape homogenous block (TSHB) pattern for the UTDC prob-
lem. The TSHB pattern generalizes the T-shape pattern by allowing each rectangle in the
T-shape pattern be a block of same-size rectangles called a “homogeneous block”. Each
homogenous block contains only pieces of the same type. Figure 4 shows two homogenous
blocks that will be defined precisely in a later section.

The TSHB pattern generalizes both the two-stage pattern and the T-shape pattern, and
so an exact solution to the TSHB problem must be at least as good as that of the optimal
two-stage or the optimal T-shape pattern. On the other hand, the three-stage, and indeed any

Fig. 4 Homogenous blocks. (a) The first strip is horizontal and (b) the first strip is vertical
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given-stage pattern does not contain the TSHB as a sub-case, that is, it does not generalize
the TSHB pattern. This will be explained later in the section that defines TSHB pattern. So
it is possible for the optimal TSHB solution to be better than that of the three-stage solution.

In the rest of this paper, we will present an exact algorithm for solving the TSHB problem
and present numerical results on a large set of test problems. For these test problems, the
optimal TSHB solution was indeed better than the optimal three-stage solution for the large
majority of the cases, while the computation time was actually shorter. Moreover, the solution
value was often identical or close to the value of the general UTDC problem. The implications
of these results for the cutting and packing community will be explored in Sect. 5.

2 Some concepts of the TSHB pattern

2.1 Homogenous blocks

Figure 5 shows three strip types often used in generating cutting patterns, where the numbers
denote the piece types. The first is a general strip consisting of pieces of different widths; the
second is a uniform strip containing pieces of the same width that is equal to the strip width;
and the third is a homogenous strip containing pieces of the same type.

Figure 4 shows two homogenous blocks. A homogenous block consists of homogenous
strips, where the same piece type is not only used within each strip, but also between strips.
The strips in a homogenous block can be cut out using a succession of guillotine cuts. Each
cut produces just one strip. Two strips that are cut successively are either parallel or orthog-
onal. The first strip in a block may be either horizontal (Fig. 4a) or vertical (Fig. 4b). The
approaches proposed in [9–13] can be used for generating optimal homogenous blocks.

2.2 Sections, segments and TSHB patterns

A segment in a simple T-shape pattern (see Fig. 3) contains either horizontal strips
(X-strips) or vertical strips (Y-strips), whereas in a TSHB pattern, a segment contains either
X-sections or Y-sections. An X-section consists of a row of homogenous blocks that are
arranged horizontally from left to right. The X-section in Fig. 6 contains three blocks, where
the arrows denote the borders of the blocks. An X-section becomes a Y-section when it is
rotated by 90◦.

A segment contains sections that have the same length and direction. Figure 7 shows
an X-segment consisting of X-sections (Fig. 7a), and a Y-segment consisting of Y-sections
(Fig. 7b), where the arrows denote the borders of the sections. Each X-section in Fig. 7a
contains two homogenous blocks. The four Y-sections in Fig. 7b contain respectively 1, 2,
2, and 4 homogenous blocks.

Figure 8 shows the TSHB patterns proposed. Each pattern contains two segments, one of
which is an X-segment, and the other is a Y-segment. The arrow in each pattern denotes the
dividing cut of the two segments. The X-segment is on the left in a TX-pattern (Fig. 8a), and
on the bottom in a TY-pattern (Fig. 8b). The X-segment in Fig. 8a contains two X-sections,

Fig. 5 Three strip types. (a) A general strip, (b) a uniform strip and (c) a homogenous strip
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Fig. 6 An X-section

Fig. 7 Segments. (a) An X-segment and (b) a Y-segment

where the first section contains three homogenous blocks (related to piece types 5, 1, and 4
respectively), and the second contains two homogenous blocks (piece types 3 and 1). The
Y-segment in Fig. 8a contains only one Y-section that consists of two homogenous blocks
(piece types 2 and 1).

Although the TSHB pattern is also a staged pattern, it cannot be generalized by any
given-stage pattern, because there is no constraint on the stage number of a homogenous
block.
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Fig. 8 TSHB patterns. (a) A TX-pattern and (b) a TY-pattern

3 The algorithm

Assume that the sizes of the stock sheet and the pieces are all integers. The pieces are allowed
to rotate by 90◦. As a result, a sheet of size L×W is equivalent to that of size W ×L . Therefore,
it is assumed that L ≥ W .

The approach will be only presented for the TX-pattern. It consists of the following steps:
(1) Generating optimal blocks; (2) determining optimal block layouts on sections; (3) deter-
mining optimal section layouts on segments; and (4) selecting two segments with orthogonal
directions to compose the cutting pattern. These steps will be presented one by one after the
introduction of normal sizes.

3.1 Normal sizes

Normal sizes have been used by many authors [1,4,6,9] and must be defined according to the
properties of the problem concerned. Take the case of a homogenous block as an example.
The basic idea is that we can limit ourselves to blocks that are tightly packed, with all the
rectangles touching, and so the lengths and widths can only take on a finite set of possible
values (given a finite sheet), and these are the normal lengths and widths. This is actually a
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key concept in the cutting and packing literature. One of the key results in this literature is as
follows [13]: Assume that g(x) is the maximum normal length not larger than x, h(y) is the
maximum normal width not larger than y, and f (x, y) is the maximum value of rectangle
x × y that contains smaller pieces, then f (x, y) = f [g(x), h(y)]. That is to say, considering
only normal sizes is sufficient in solving cutting problems. Three types of normal sizes will
be defined below.

Definition 1 (Normal sizes of blocks) Each block contains pieces of the same type. There-
fore, normal sizes of blocks are defined for each piece type. For piece type i, i = 1, . . . , m,
assume that the set of normal sizes is P(i), then:

P(i) = {x = z1li + z2wi ; z1, z2 ∈ N; 0 ≤ x ≤ L}
That is to say, normal block sizes are the combinations of the piece length and width. To
facilitate the presentation, add L and W to P(i) if they are not in the set. A block is a normal
one if both its length and width are normal sizes.

Definition 2 (Normal sizes of sections) A section contains a row of blocks (Fig. 6). As
mentioned in Sect. 2.2, the section direction may be either horizontal (X-section) or vertical
(Y-section). The width of an X-section is measured vertically, and that of a Y-section is mea-
sured horizontally. Therefore, the maximum length and width of the sections are both L . If
the width of a section does not equal to any normal block width, it may be shortened to the
nearest normal block width, without changing the block layout on the section. Therefore, the
set of normal section widths is defined as:

Qsection =
m⋃

i=1

P(i) = {
qsec

1 , qsec
2 , . . . , qsec

N

}
in which N is the number of elements in the set.

Normal section lengths are the combinations of all block sizes, or the combinations of all
piece lengths and widths. They are denoted by the following set:

Psection =
{

x =
m∑

i=1

(z1i li + z2iwi ); z1i , z2i ∈ N, i = 1, . . . , m; 0 ≤ x ≤ L

}

= {psec
1 , psec

2 , . . . , psec
M }

in which M is the number of elements in the set.
A section is a normal one if its length belongs to Psection, and its width belongs to Qsection.

Definition 3 (Normal sizes of segment) A segment contains sections in the same direc-
tion. The length of the segment is the same as that of the sections included. Assume that
Psegment is the set of normal segment sizes. It is the same as the set of section lengths, namely
Psegment = Psection. A segment is a normal one if both its length and width belong to Psegment.

3.2 Optimal blocks

Assume that B(x, y) is the global optimal value of block x × y, x ∈ Psegment, y ∈ Psegment

and y ≤ W . The steps to determine B(x, y) are:

Step 1. Let B(x, y) = 0 for all x ∈ Psegment, y ∈ Psegment and y ≤ W . Let i = 1.
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Step 2. Using the algorithm in [13] to determine n(x, y), the number of pieces of type i in
block x × y, x ∈ P(i), y ∈ P(i) and y ≤ W .

Step 3. Consider the normal block sizes of piece type i one by one. Go to Step 4 when
finished. For each block x × y currently considered, let v = n(x, y) × ci and
B(x, y) = max[B(x, y), v].

Step 4. Let i = i + 1. Go to Step 2 if i ≤ m; Otherwise go to Step 5.
Step 5. Normalize B(x, y) so that B(x, y) ≥ B(x0, y0) holds if x0 ≤ x and y0 ≤ y, where

x, x0, y, y0 are all normal segment sizes.

3.3 Optimal block layouts on sections

A section contains a row of blocks. The following model determines u(x, y), the optimal
value of section x × y (length x and width y), x ∈ Psection and y ∈ Qsection:

u(x, y) =
{

max

[
M∑

i=1

zi B(psec
i , y)

]
;

M∑
i=1

zi psec
i ≤ x; zi ∈ N

}
(1)

Model (1) is an unbounded knapsack problem, and good algorithms exist for it [14].

3.4 Optimal section layouts on segments

Assume that fY (x, W ) is the value of Y-segment x × W , and fX (x, W ) is the value of
X-segment x × W . The following model determines fY (x, W ), x ∈ Psegment:

fY (x, W ) =
{

max

[
N∑

i=1

zi u(W, qsec
i )

]
;

N∑
i=1

zi q
sec
i ≤ x; zi ∈ N

}
(2)

The following model determines fX (x, W ), x ∈ Psegment:

fX (x, W ) =
{

max

[
N∑

i=1

zi u(x, qsec
i )

]
;

N∑
i=1

zi q
sec
i ≤ W ; zi ∈ N

}
(3)

Models (2) and (3) are also unbounded knapsack problems. Model (3) must be solved for
each X-segment. Recall that each section in a segment of a TSHB pattern is equivalent to a
strip in a segment of a simple pattern (such as the simple T-shape pattern [8]). Arranging the
segments in increasing order of their lengths and using the techniques presented in [16] can
reduce the computation time greatly.

3.5 The optimal TSHB pattern

For the TX-pattern, assume that division x means that the dividing cut is at position
x (0 ≤ x ≤ L), and the related pattern value is U (x). Division x divides the stock sheet into
two segments: The X-segment x ×W on the left, and the Y-segment (L −x)×W on the right.
The pattern value is determined as U (x) = fX (x, W ) + fY (L − x, W ). After considering
all possible divisions, the one with maximum pattern value is the optimal division. From
the property of normal sizes, only those divisions that are normal segment lengths should be
considered, namely x ∈ Psegment. Assume that g(x) is the maximum normal segment size not
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larger than x , and VX is the value of the optimal TX-pattern. We have the following equation:

xY = g(L − x), U (x) = fX (x, W ) + fY (xY , W ), x ∈ Psegment;
VX = max{U (x)|x ∈ Psegment} (4)

Assume that the value of the optimal TY-pattern is VY , which can be determined in a
similar way. The value of the optimal T-shape pattern is V = max(VX , VY ).

3.6 Non-promising segments

If Model (2) is solved for x = L , the values of all Y-segments will be obtained. That is
to say, it is sufficient to solve only one large knapsack problem to obtain fY (x, W ) for all
x ∈ Psegment. Model (3) does not have this property. It must be solved for each X-segment.
The following discussion indicates that some non-promising X-segments may be skipped in
searching for the optimal TX-pattern.

Considering two divisions x1 and x2, where x1 < x2. Assume that z1 = g(L − x1) and
z2 = g(L − x2), then z1 ≥ z2. The following equations hold from Eq. 4 and Model (3):

U (x1) = fX (x1, W ) + fY (z1, W ); U (x2) = fX (x2, W ) + fY (z2, W )

fX (x1, W ) ≤ fX (x2, W )

From these equations, U (x1) ≤ U (x2) holds if fY (z1, W ) = fY (z2, W ). As a result,
X-segment x1 × W is referred to as a non-promising segment and can be skipped.

3.7 The algorithm for generating the optimal TSHB pattern

The algorithm contains the following steps:

Step 1. Determine all types of normal sizes according to Definitions 1 to 3.
Step 2. Determine the optimal blocks according to Sect. 3.2.
Step 3. Determine the optimal sections from Model (1).
Step 4. Determine the optimal segments from models (2) and (3).
Step 5. Determine the optimal TSHB pattern according to Sect. 3.5.

4 The computational results

To the author’s knowledge, there are no algorithms for the TSHB pattern. As mentioned
previously, the TSHB pattern generalizes the T-shape pattern [8], and cannot generalize the
two-segment pattern [15,16] and the three-stage pattern [4]. This section compares the TSHB
pattern with the three-stage pattern and the general pattern. Four groups of benchmark prob-
lems are used. For each problem, the algorithm of this paper generates the optimal TSHB
pattern, Hifi’s algorithm [4] generates the optimal three-stage pattern, and the algorithm in [7]
determines the optimal general pattern. These three algorithms are referred to as the TSHBA,
3STAGE, and GENERAL respectively. Let vTSHBA and tTSHBA be the value and computation
time of the TSHB pattern respectively. Let v3STAGE and t3STAGE be those of the three-stage
pattern, and vGENERAL and tGENERAL be those of the general pattern. The problem scale of
the second group is larger than those of the other two groups. The problems of the first two
groups are available on the Internet at http://www.laria.u-picardie.fr/hifi/OR-Benchmark/.
Once the paper is published, the problems of the other two groups will be made available
on the author’s homepage (http://www.gxnu.edu.cn/Personal/ydcui/). The three algorithms
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were all run on a computer with Pentium 4 CPU, clock rate 2.8 GHz, and main memory
512 MB.

4.1 The computational results of the first group

The first group includes 41 problems whose details are available from [4]. Table 1 shows the
computational results, where the mark “�” denotes that the pattern value is equal to that of the
optimal general pattern. The number of problems solved to optimality is 34 for the TSHBA,
and 30 for the 3STAGE. Compared with the 3STAGE, the pattern value of the TSHBA is
larger in 11 problems, equal in 28 problems, and smaller in 2 problems. On the average, the
TSHBA can perform better than the 3STAGE in improving material usage. Both algorithms
can give solutions very close to optimal.

The total computation time is 18.845 s for the TSHBA, 31.766 s for the 3STAGE, and
1708.265 s for the GENERAL. The average computation times of the three algorithms are
respectively 0.460, 0.775, and 41.665 s. The computation time of the GENERAL is much
longer than those of the TSHBA and the 3STAGE. The computation time of the TSHBA is
shorter than that of the 3STAGE.

4.2 The computational results of the second group

The second group includes 20 problems whose details are available from [17]. Table 2 shows
the computational results. Both the TSHBA and the 3STAGE can give solutions very close to
optimal. Compared with the 3STAGE, the solutions of the TSHBA are better in 15 problems,
and equal in five problems. The TSHBA performs better in improving material usage than
the 3STAGE.

The total computation time is 41.389 s for the TSHBA, 681.942 s for the 3STAGE, and
1841.532 s for the GENERAL. The average computation times of the three algorithms
are respectively 2.069, 34.097, and 92.077 s. It should be noted that the first 10 problems
are unweighted where the value of each piece equals to its area, and the last 10 problems
are weighted where the piece value does not equal to its area. The computation time of
the TSHBA is comparable with that of the 3STAGE for unweighted problems, and is much
shorter than that of the 3STAGE for weighted problems.

4.3 The computational results of the third and fourth group

The third group includes 50 unweighted problems that are the same as those in the first group
of [7]. The sheet size is 3,000×1,500. Each problem includes 30 piece types. The length and
width of each piece were generated by sampling two integers from the uniform distribution
[200, 700]. The value of each piece is equal to the piece area. Table 3 shows the computa-
tional results. The total computation time is 42.019 s for the TSHBA, and 61.125 s for the
3STAGE. The average computation times of the two algorithms are respectively 0.840 and
1.223 s. Compared with the 3STAGE, the solutions of the TSHBA are better in 20 problems,
equal in 29 problems, and worse in one problem (Problem 18).

The problems in the fourth group are weighted problems. They are the same as those in
the third group except the piece values. The piece value is equal to the piece area multi-
plied by a coefficient uniformly distributed in [0.5, 1.0]. Table 4 shows the computational
results. The total computation time is 17.811 s for the TSHBA, and 564.031 s for the 3STAGE.
The average computation times of the two algorithms are respectively 0.356 and 11.281 s.
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Table 1 The computational results of the problems in the first group

ID vGENERAL vTSHBA v3STAGE tGENERAL tTSHBA t3STAGE

H 12,387 � 12,348 0.031 0.000 0.000

HZ1 5,226 � � 0.016 0.000 0.000

M1 15,550 � 15,468 0.000 0.000 0.000

M2 73,176 � 73,080 0.046 0.000 0.016

M3 147,366 � 147,054 0.000 0.000 0.000

M4 273,991 � � 0.047 0.00 0.015

M5 590,012 588,315 586,879 0.062 0.016 0.016

B 9,000,000 � � 295.313 2.704 2.906

U1 22,435,030 22,419,021 22,416,630 408.062 1.844 1.500

U2 20,446,684 � 20,382,215 28.938 0.765 0.563

UU1 246,046 � � 0.047 0.015 0.031

UU2 595,655 � � 0.141 0.031 0.047

UU3 1,089,308 � � 0.156 0.047 0.047

UU4 1,188,638 � � 0.328 0.078 0.125

UU5 1,878,253 � � 0.578 0.125 0.219

UU6 2,951,202 � � 0.250 0.110 0.187

UU7 2,949,043 � � 0.891 0.188 0.328

UU8 3,974,828 3,964,638 � 0.859 0.203 0.360

UU9 6,117,826 � 6,110,442 1.000 0.282 0.437

UU10 12,004,474 11,996,982 11,996,982 2.094 0.547 0.797

UU11 13,170,382 13,169,380 13,161,640 958.547 8.203 3.937

HZ2 8,523 � 8,394 0.000 0.000 0.000

MW1 3,916 � � 0.000 0.000 0.000

MW2 24,950 � � 0.015 0.000 0.016

MW3 39,637 � � 0.000 0.000 0.000

MW4 64,044 � � 0.032 0.015 0.016

MW5 190,937 � � 0.031 0.015 0.015

BW 2,379,786 � 2,370,620 3.266 0.686 17.313

W1 168,834 168,289 168,289 4.234 1.267 1.156

W2 37,621 � � 0.656 0.281 0.250

UW1 6,696 � � 0.016 0.016 0.016

UW2 9,732 � � 0.047 0.015 0.015

UW3 7,188 6,500 � 0.031 0.016 0.032

UW4 8,452 � � 0.125 0.062 0.062

UW5 8,398 � � 0.110 0.047 0.063

UW6 6,937 � � 0.156 0.110 0.093

UW7 11,585 � � 0.297 0.156 0.172

UW8 8,088 � � 0.547 0.266 0.297

UW9 7,527 � � 0.390 0.281 0.234

UW10 8,172 � � 0.875 0.438 0.454

UW11 18,200 � � 0.031 0.016 0.031
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Table 2 The computational results of the problems in the second group

ID vGENERAL vTSHBA v3STAGE tGENERAL tTSHBA t3STAGE

ATP10 3,591,980 3,591,813 3,591,395 208.172 5.844 27.469

ATP11 4,190,481 4,189,704 4,189,406 241.579 5.391 3.797

ATP12 5,162,097 5,157,782 5,157,280 93.297 1.344 1.922

ATP13 3,498,302 3,498,240 3,496,776 220.719 5.640 7.031

ATP14 4,466,844 4,466,098 4,466,098 124.656 1.859 1.875

ATP15 6,054,955 6,054,230 6,053,226 172.156 2.750 3.000

ATP16 7,573,596 7,573,404 7,571,638 237.359 3.781 3.922

ATP17 4,537,842 � 4,536,836 253.047 5.844 4.000

ATP18 5,835,996 5,834,516 5,834,516 75.313 1.266 2.782

ATP19 6,833,281 6,832,852 6,831,801 180.062 2.234 2.546

ATP20 5,717,092 � 5,691,316 3.484 0.735 31.344

ATP21 3,582,310 3,573,678 3,556,714 1.531 0.468 125.796

ATP22 4,190,116 4,185,891 4,179,696 5.969 0.625 1.469

ATP23 3,568,354 3,567,248 3,557,391 5.156 0.609 21.641

ATP24 4,078,132 � � 3.219 0.594 3.457

ATP25 3,546,813 3,538,507 3,531,646 6.141 0.531 373.235

ATP26 2,723,840 2,723,248 2,694,022 1.406 0.359 46.859

ATP27 2,458,038 � � 2.610 0.359 0.594

ATP28 4,113,349 4,112,224 4,112,224 3.672 0.625 5.000

ATP29 3,688,965 � 3,676,018 1.984 0.531 14.203

The former is only about three percent of the later. Compared with the 3STAGE, the solutions
of the TSHBA are better in 11 problems, equal in 36 problems, and worse in three problems.

4.4 Solution to a an example

Table 5 shows the piece data that was taken from a factory that makes passenger cars. There
are 49 piece types. The sheet size is 4,000 × 3,000. The value of each blank is equal to its
area. Algorithms TSHBA and GENERAL were used to solve the example. The computa-
tional results are as follows: vTSHBA = vGENERAL = 12, 000, 000, tTSHBA = 82.89 s, and
tGENERAL = 3423.36 s. Both algorithms generated optimal patterns, and the computation
time of the TSHBA is much shorter than that of the GENERAL.

5 Conclusions

Although exact algorithms exist for general patterns, the computational complexities of them
are unknown. The computational experiences in the literature have indicated that the time
required by an exact algorithm to solve large-scale problems may become unaffordable. Two
approaches have been used to deal with large-scale problems. The first approach is to apply
patterns of a specific type, such as staged patterns, T-shape patterns, and two-segment pat-
terns. The exact algorithms for specific pattern types usually have higher time efficiency, and
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Table 3 The computational results of the problems in the third group

ID vTSHBA v3STAGE tTSHBA t3STAGE ID vTSHBA v3STAGE tTSHBA t3STAGE

1 4,492,074 4,491,180 1.109 1.344 26 4,497,306 4,497,306 0.923 1.390

2 4,492,500 4,492,500 0.890 1.266 27 4,490,638 4,490,638 0.609 0.891

3 4,497,594 4,496,682 0.969 1.156 28 4,493,799 4,493,368 0.750 4.015

4 4,492,558 4,490,964 0.922 1.250 29 4,496,904 4,496,904 0.845 1.079

5 4,493,361 4,493,361 0.906 1.047 30 4,498,350 4,498,350 0.875 1.046

6 4,496,824 4,496,695 0.922 1.406 31 4,492,556 4,492,556 0.703 0.969

7 4,492,669 4,486,588 0.625 0.953 32 4,492,959 4,490,720 0.828 1.078

8 4,491,640 4,491,640 0.765 1.031 33 4,488,720 4,488,720 0.671 0.969

9 4,494,636 4,492,875 0.813 1.157 34 4,492,631 4,492,528 0.767 1.188

10 4,496,072 4,496,072 1.078 1.375 35 4,493,946 4,493,946 0.687 0.921

11 4,491,138 4,491,138 0.780 1.250 36 4,495,380 4,495,380 0.953 1.204

12 4,493,506 4,493,506 0.829 1.140 37 4,492,172 4,492,172 0.969 1.156

13 4,490,166 4,490,166 0.828 1.016 38 4,492,964 4,492,964 0.906 1.094

14 4,496,160 4,493,740 0.891 1.141 39 4,492,234 4,492,234 0.797 1.031

15 4,498,844 4,497,501 0.969 1.281 40 4,492,576 4,490,549 0.563 0.828

16 4,497,000 4,495,572 0.718 1.047 41 4,496,185 4,496,185 0.827 1.172

17 4,490,865 4,490,865 0.656 0.953 42 4,495,964 4,495,230 1.094 1.187

18 4,491,790 4,492,768 0.845 1.359 43 4,492,347 4,492,347 1.188 1.250

19 4,494,660 4,494,061 1.125 1.219 44 4,492,378 4,492,378 0.813 0.985

20 4,495,538 4,495,538 0.859 1.937 45 4,491,417 4,491,417 0.750 1.093

21 4,491,848 4,490,944 0.734 1.235 46 4,494,330 4,494,330 0.907 1.141

22 4,488,809 4,488,064 0.609 0.812 47 4,496,259 4,492,869 0.812 1.141

23 4,496,100 4,496,100 0.922 1.782 48 4,494,828 4,494,090 1.000 1.937

24 4,493,346 4,491,184 0.843 1.156 49 4,493,488 4,493,488 0.860 1.094

25 4,494,030 4,494,030 0.687 0.969 50 4,491,086 4,491,086 0.718 0.984

may be appropriate for practical applications. The second approach is to develop heuristics
for general patterns. These heuristics may also be applicable in practice.

The TSHBA can act as an exact algorithm to generate optimal TSHB patterns. As a spe-
cific pattern type, the TSHB pattern can yield more efficient material usage than two-stage
pattern and the classic T-shape pattern. Although it cannot generalize the three-stage pattern,
the computational results of this paper indicate that for most problems, the material usage of
the TSHB pattern is higher than that of the three-stage pattern. The TSHB pattern may also
yield better material usage than the two-segment pattern that is generalized by the three-stage
pattern.

The TSHBA can also act as a heuristic. The computational results indicate that the values
of the optimal TSHB patterns are very close to those of the optimal general patterns. The
computation time of the TSHBA is much shorter than that of the GENERAL [7]. Compared
with the 3STAGE [4], the average computation time of the TSHBA is shorter for unweighted
problems, and is much shorter for weighted problems.

This paper provides a research area for the cutting and packing community. Although the
paper presents an algorithm for generating optimal TSHB patterns, and the computation time
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Table 4 The computational results of the problems in the fourth group

ID vTSHBA v3STAGE tTSHBA t3STAGE ID vTSHBA v3STAGE tTSHBA t3STAGE

1 4,288,132 4,288,132 0.422 42.031 26 4,423,971 4,423,971 0.359 4.016

2 4,331,992 4,336,733 0.3910 17.157 27 4,386,609 4,341,723 0.298 0.422

3 4,391,908 4,391,908 0.3750 1.281 28 4,203,619 4,186,933 0.343 3.828

4 4,389,770 4,389,770 0.3750 1.859 29 4,273,564 4,273,564 0.344 0.703

5 4,305,809 4,316,162 0.4060 33.844 30 4,260,020 4,260,020 0.359 8.219

6 4,328,627 4,328,627 0.360 0.828 31 4,390,372 4,390,372 0.313 0.578

7 4,353,716 4,353,716 0.296 4.625 32 4,402,439 4,402,439 0.343 21.203

8 4,319,984 4,318,801 0.376 0.969 33 4,245,930 4,232,260 0.313 6.657

9 4,323,212 4,323,212 0.359 260.594 34 4,279,744 4,279,744 0.328 1.890

10 4,327,333 4,327,333 0.437 14.578 35 4,274,391 4,274,391 0.328 1.313

11 4,310,695 4,310,695 0.359 6.094 36 4,340,758 4,340,758 0.375 6.640

12 4,178,060 4,173,588 0.345 30.984 37 4,385,565 4,385,565 0.375 28.516

13 4,295,478 4,295,478 0.406 0.531 38 4,314,348 4,320,956 0.359 2.422

14 4,281,648 4,281,648 0.422 0.500 39 4,254,618 4,254,618 0.328 2.297

15 4,334,688 4,334,688 0.359 1.141 40 4,201,616 4,201,616 0.312 0.812

16 4,413,317 4,396,440 0.360 5.765 41 4,366,725 4,366,725 0.360 0.500

17 4,298,987 4,298,987 0.343 5.547 42 4,286,672 4,286,672 0.359 1.141

18 4,392,600 4,392,600 0.344 0.422 43 4,304,300 4,304,300 0.375 9.359

19 4,391,624 4,387,800 0.344 0.672 44 4,398,526 4,398,526 0.344 0.485

20 4,330,513 4,316,705 0.359 6.734 45 4,374,096 4,374,096 0.312 4.484

21 4,281,328 4,281,328 0.344 0.547 46 4,218,840 4,218,840 0.375 0.906

22 4,395,975 4,395,975 0.312 0.625 47 4,323,138 4,311,156 0.390 4.625

23 4,305,795 4,300,815 0.391 7.360 48 4,398,880 4,398,880 0.328 0.735

24 4,346,817 4,330,720 0.359 0.578 49 4,300,400 4,300,400 0.3440 3.812

25 4,367,335 4,367,335 0.375 1.906 50 4,373,114 4,373,114 0.328 1.281

Table 5 The piece data of the example (li × wi )

990 × 235, 220 × 113, 288 × 250, 1,160 × 868, 1,000 × 868, 868 × 598, 1,160 × 258, 1,000 × 96,

1,000 × 152, 185 × 160, 1,183 × 521, 815 × 521, 1,012 × 571, 455 × 180, 540 × 192, 555 × 210, 253 × 143,

442 × 420, 240 × 90, 330 × 182, 800 × 133, 800 × 403, 803 × 333, 778 × 116, 778 × 78, 1,200 × 241,

1,020 × 262, 1,300 × 121, 1,300 × 83, 800 × 120, 700 × 133, 1,200 × 85, 480 × 480, 965 × 705, 800 × 390,

680 × 185, 840 × 410, 800 × 73, 800 × 40, 930 × 78, 930 × 50, 600 × 88, 1,200 × 146, 822 × 465,

876 × 318, 755 × 147, 460 × 180, 270 × 117, 215 × 145

is reasonable for some practical applications, there are still other cases where high efficiency
algorithms may be required. Future researchers can construct more efficient algorithms to
meet various requirements coming from practice.

For practical applications, the demand of the pieces is usually constrained, that is, there is
an upper bound on the number of pieces of each type that can be used in the pattern. The linear
programming (LP) approach is often applied to solve the cutting problem when the demand is
relatively large [8,15]. It obtains the solution through iteration. In each cycle of the iteration,
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an algorithm of the UTDC problem must be utilized to generate an unconstrained cutting
pattern. A large number of cutting patterns must be generated before the LP approach finds
a solution close to optimal. This number may reach 100–1,000s. Recall that the computation
time for the GENERAL to generate a cutting pattern may reach 100–1,000s seconds. Exact
algorithms may be inadequate because of their long computation time. The TSHBA may be
used as a candidate for solving the UTDC when applying the LP approach, because it can
generate patterns close to optimal in much shorter time.
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